Potente impulso a las tecnologías cuánticas

Potente impulso a las tecnologías cuánticas



El investigador de la Universidad de Rice, Xinwei Li, con el espectrómetro de terahercios que luego utilizó para medir el entrelazamiento cuántico de los electrones que fluyen en el interior del metal raro. Foto: Jeff Fitlow/Rice University.

El investigador de la Universidad de Rice, Xinwei Li, con el espectrómetro de terahercios que luego utilizó para medir el entrelazamiento cuántico de los electrones que fluyen en el interior del metal raro. Foto: Jeff Fitlow/Rice University.

Un equipo internacional de científicos ha creado un así llamado “metal raro” que contiene en su interior un espectacular yacimiento de miles de millones de electrones en estado de entrelazamiento cuántico.

El entrelazamiento cuántico es una propiedad única de las partículas elementales: una vez han estado entrelazadas, cualquier cambio en una de ellas se manifestará instantáneamente en la otra, aunque estén separadas por miles de kilómetros de distancia.

El entrelazamiento cuántico es la base para el almacenamiento y el procesamiento de la información cuántica, pero no es fácil de conseguir: está expuesto a una serie de limitaciones para que pueda ser aprovechado por las tecnologías cuánticas, que se están extendiendo rápidamente por el tejido económico.

El hecho de que un nuevo material extraño ofrezca espontáneamente electrones en entrelazamiento cuántico impulsará el desarrollo de las comunicaciones cuánticas, la computación cuántica, los simuladores cuánticos, la detección cuántica, la óptica cuántica, la fotónica y la superconductividad, entre otras.

Materiales raros

Los metales raros se llaman así porque su resistencia eléctrica se comporta de manera muy extraña y ofrecen una especial superconductividad, que es la capacidad de conducir la corriente eléctrica sin perder energía cuando se reúnen determinadas condiciones.

Muchos materiales tienen que enfriarse a casi el cero absoluto (la temperatura más baja que se puede conseguir, -273.15°C) para que la corriente eléctrica fluya sin resistencia, mientras que otros materiales tienen propiedades superconductoras a temperaturas más altas.

Los metales raros están estrechamente relacionados con los superconductores que funcionan a temperaturas más altas: muestran una relación entre temperatura y resistencia completamente diferente a la de los metales simples, como el cobre o el oro.